
Abstract 
 

Reconfigurable devices used in digital signal 
processing applications must handle large amounts of 
data in vector form. Most signal processing algorithms 
use multiplication extensively; thus, the hardware must 
support this operation to achieve high performance. 
However, mapping a multiplier on traditional fine-grain 
devices produces a complex structure whose performance 
is limited by the routing overhead. In this paper, we 
present a novel pipelined multiplier structure suitable for 
medium-grain and coarse-grain reconfigurable cell 
arrays. We first implement an unsigned n-bit multiplier 
using m-bit cells. Then, we show how the same structure 
can work with two’s-complement data with small changes 
to the configuration. The structure requires n/m2 cells, 
but can execute vector operations in a pipelined fashion. 
We also discuss the benefits of using a hierarchical 
design for large multipliers. 
 
 
1. Introduction 
 

Reconfigurable hardware has become an attractive 
option for implementing digital signal processing (DSP), 
especially in applications that require both high 
performance and flexibility. The performance of 
reconfigurable devices typically falls between custom 
integrated circuits and digital signal processors, while the 
flexibility may even surpass both alternatives. In addition, 
reconfigurable hardware incurs a low development cost 
and can be adapted if the needs of the application change, 
even after deployment [1]. 

DSP algorithms place great demands on the processing 
power of any hardware implementation, due to the large 
amount of binary arithmetic involved. For example, the 
basic operation of a finite impulse-response (FIR) filter 
contains several multiplications and additions: 
 
y[n] = b0x[n] + b1x[n – 1] + … + bkx[n – k] (1) 

As another example, the essential component of the Fast 
Fourier Transform (FFT) also requires these two 
operations, although the inputs and outputs are complex 
numbers in this case: 
 
Y0 = X0 + X1, 
Y1 = (X0 – X1) × W. (2) 
 
Most DSP algorithms repeat basic operations such as 
these for every sample in the data set. To achieve 
maximum performance, the hardware can pipeline the 
multiplication and addition operations so that multiple 
samples can be processed simultaneously. This technique 
dramatically reduces the execution time of DSP 
algorithms, but incurs a penalty of additional overhead. 

Consider the problem of using reconfigurable 
hardware to perform binary arithmetic on large data sets. 
In general, reconfigurable devices contain an array of 
programmable cells and interconnection structures [2]. 
Traditional fine-grain architectures such as the field-
programmable gate array (FPGA) place little functionality 
in the cells. Implementing an adder on a fine-grain device 
presents no major problems, as the cells can easily 
generate the carry and sum bits required for this 
operation. However, implementing a multiplier is a 
significant challenge, due to the routing delays associated 
with inter-cell communication in fine-grain devices. One 
way around this problem is to include dedicated 
multiplication hardware in the architecture [3, 4]. Another 
approach is to extend the capabilities of each cell to work 
with m-bit data words instead of single bits [5]. In fact, 
these medium-grain and coarse-grain reconfigurable 
devices show great promise for DSP applications [6, 7]. 

With this approach, the problem then becomes the 
following: given an array of m-bit cells, design a structure 
to multiply two unsigned n-bit integers A and B: 
 
Y2n–1:0 = (An–1:0 × Bn–1:0). (3) 
 
Note that the output Y contains 2n bits. As an initial 
approach, consider the familiar carry-save multiplier [8]. 
Figure 1 illustrates this structure for n=20 and m=4. The 
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multiplier contains a rectangular array of cells with n/m 
cells in the horizontal direction and n/m + 1 cells in the 
vertical direction. A and B are divided into m-bit portions 
and broadcast across the columns and rows of the array. 
 

 
 
Figure 1.  Carry-save multiplier (n=20, m=4) 
 

Unlike a typical carry-save multiplier, each cell works 
with m-bit inputs instead of 1-bit inputs. Cells on the top 
row multiply two m-bit portions of A and B, passing the 
upper and lower portions of result to other cells or the Y 
output. Cells in the middle rows perform the same 
multiplication and then add up to two m-bit terms to the 
result. Finally, cells on the bottom row add up to three m-
bit terms together. As a function of n and m, the carry-
save multiplier requires n/m2 + n/m cells, while the 
critical path is 2n/m cells long. 

In the remainder of this paper, we describe a novel 
improvement to the carry-save multiplier that reduces the 
total number of cells required. As described in Section 2, 
we modify the interconnection structure so that every cell 
carries the same workload. The resulting structure can be 
pipelined easily for high throughput. In Section 3, we 
demonstrate that the same structure can be used to 
perform two’s-complement multiplication with slight 
changes to the operations performed by each cell. Section 
4 briefly explores a hierarchical architecture in which 
each cell uses a matrix of smaller elements to implement 
the necessary operations. Finally, Section 5 gives some 
concluding remarks. 

2. Unsigned Multiplier 
 

The most complex operation performed by any cell in 
the carry-save multiplier is the m-bit multiply-accumulate 
(MAC) function 
 
y2m–1:0 = (am–1:0 × bm–1:0) + cm–1:0 + dm–1:0. (4) 
 
Here a and b represent the two m-bit portions of A and B, 
and c and d denote the two terms added to the result. 
Figure 2 illustrates the inputs and outputs of a cell that 
computes the MAC operation. 
 

 
 
Figure 2.  Inputs and outputs of MAC cell (m=4) 
 

As we proposed in [9], one can reduce the size of the 
multiplier by ensuring that all cells perform the same 
operation. Such a reduction is possible because 
reconfigurable devices typically contain an array of 
identical cells. Observe in Figure 1 that the bottom row of 
cells do not perform multiplication, and the cells in the 
left column add one term instead of the usual two. Hence, 
we can eliminate the bottom row of cells and rearrange 
the interconnection scheme so that the cells in the left 
column “take up the slack”. Figure 3 depicts the resulting 
structure for the 20-bit case. This improved design has a 
size of n/m2 cells and a critical path 2n/m – 1 cells 
long. 

Notice that two extra n-bit terms C and D can be 
incorporated into the top row of cells. This enhancement 
creates a powerful n-bit MAC unit that evaluates the 
expression 
 
Y2n–1:0 = (An–1:0 × Bn–1:0) + Cn–1:0 + Dn–1:0. (5) 
 

The primary advantage of using arrays of cells to 
perform multiplication is that the DSP algorithm can 
exploit the benefits of pipelining. Suppose that we 
superpipeline the structure in Figure 3 so that each cell 
occupies one pipeline stage. The clock cycle time thus 
includes the time to evaluate the m-bit MAC function as 
well as the time to transfer the result to adjacent cells. 
Figure 4 labels each cell in the improved MAC unit with 
the clock cycle at which it calculates the intermediate 
result. We can then insert the appropriate number of 
pipeline registers into the module, as depicted by slashes 
in the figure. 
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Figure 3.  Improved MAC unit (n=20, m=4) 
 
 

 
 
Figure 4. Superpipelined MAC unit 
 

The latency of this superpipelined design equals the 
length of the critical path, or 2n/m – 1 cycles. However, 
the structure can initiate one operation per clock cycle, 
making the resulting throughput very high. Notice that the 
MAC unit generates the Y output in a staggered fashion: 
the least significant m bits in the first cycle, the next m 
bits in the second cycle, and so forth. The B input should 
also arrive in this staggered fashion. 

The pipelining scheme in Figure 4 has one 
disadvantage: the m-bit portions of the B input must be 
broadcast across several columns of cells during the same 
clock cycle. Depending on the architecture of the 
reconfigurable device, such an operation may not be 
feasible. One way to eliminate the broadcast is to pipeline 
all the internal lines of the MAC unit. As shown in Figure 
5 for the 20-bit case, this change increases the total 
latency of the module to 3n/m – 2. This additional delay 
should be negligible for most DSP algorithms, since the 
multiplier still initiates one operation per clock cycle. For 
example, to multiply two 20-bit vectors of 1000 elements, 
the former design requires 1008 cycles, whereas the latter 
design requires 1012 cycles. If the clock cycle time can 
be reduced due to the absence of broadcast operations, the 
MAC unit with pipelined internal lines actually achieves 
higher performance. 
 

 
 
Figure 5. Superpipelined MAC unit with pipelined 
internal lines 
 
3. Two’s-Complement Multiplier 
 

As a rule, DSP algorithms work with both positive and 
negative numbers, so it is reasonable to expect that 
applications may require two’s-complement 
multiplication. In fact, the same multiplier structure can 
be used to perform this operation, except that some cells 
evaluate slightly different functions. Before we discuss 
these modifications, recall from (4) that each cell in the 
unsigned MAC unit evaluates the m-bit MAC function 
 
y2m–1:0 = (am–1:0 × bm–1:0) + cm–1:0 + dm–1:0. (4) 
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Figure 6 illustrates how these m-bit terms are defined for 
various cells in the design. For consistency, the c input to 
the cell always appears to the left of the d input. 
 

 
 
Figure 6.  Cells in improved MAC unit 
 

Now consider a two’s-complement MAC unit that 
handles n-bit inputs in m-bit portions. From the properties 
of two’s-complement numbers, the most significant m-bit 
portion has two’s-complement format, but the remaining 
m-bit portions have unsigned format. Hence, if we modify 
the unsigned MAC unit to perform two’s-complement 
arithmetic, many of the cells will still operate on unsigned 
inputs. Figure 7 depicts the two’s-complement multiplier 
for n=20 and m=4. Solid lines denote unsigned data; 
dashed lines denote two’s-complement data. 
 

 
 
Figure 7. Two’s-complement MAC unit (m=20, n=4) 
 

Observe that some of the cells generate two’s-
complement outputs, whereas other cells do not. In fact, 
the two’s-complement MAC unit contains seven types of 
cells, labeled A through H in the figure (G is missing for 
technical reasons). The A cells simply evaluate the 
unsigned MAC function in (4). However, the B cell must 
multiply the two’s-complement portion of A with an 

unsigned portion of B. The cell also adds two’s-
complement portions of C and D to the result. 

In order to represent the entire range of valid outputs, 
the B cell must generate a 2m-bit output y whose upper m 
bits and lower m bits are both two’s-complement 
numbers. This data format is unusual, but is the best 
choice for representing the result. One can think of the 
cell as generating two m-bit outputs satisfying the 
expression 
 
2my2m–1:m + ym–1:0 = (am–1:0 × bm–1:0) + cm–1:0 + dm–1:0. (6) 
 
where am–1:0, cm–1:0, dm–1:0, y2m–1:m, and ym–1:0 are in two’s-
complement format. Table 1 lists several example 4-bit 
calculations for the B cell. Recall that a 4-bit two’s-
complement numbers ranges from –8 to 7, whereas a 4-bit 
unsigned number ranges from 0 to 15. 
 

Table 1: Example calculations of the B cell 
 

a3:0 b3:0 c3:0 d3:0 y7:4 y3:0 y7:0 = 16y7:4 + y3:0 
5 5 5 –5 2 –7 25 
5 10 5 5 4 –4 60 

–5 5 5 –5 –2 7 –25 
–5 10 –5 –5 –4 4 –60 
7 15 7 7 7 7 119 

–8 15 –8 –8 –8 –8 –136 
 

A similar analysis can be performed for the remaining 
cells used in the multiplier. For example, the C cells 
generate an unsigned output y2m–1:m and a two’s-
complement output ym–1:0. With the data formats shown in 
Figure 7, the n-bit multiplier can generate a two’s-
complement output Y without additional hardware. Table 
2 lists the input and output format of each type of cell 
(including the G cell used later). A “+” sign denotes 
unsigned format, and a “–” sign denotes two’s-
complement format. 
 

Table 2: Data format requirements for each cell 
 

Type am–1:0 bm–1:0 cm–1:0 dm–1:0 y2m–1:m ym–1:0 
A + + + + + + 
B – + – – – – 
C + + + – + – 
D – + – + – + 
E + – – + – + 
F + – + – – + 
G + + – + + – 
H – – – – – + 
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4. Hierarchical Multiplier 
 

The last two sections have demonstrated that n-bit 
MAC units in general require seven types of cells. Each 
cell performs the MAC function on m-bit inputs, but 
different cells use different data formats. A natural 
question is how each cell can implement the required m-
bit operations. For m=1, a simple combinational circuit 
suffices, but for larger m, the most practical solution may 
involve some kind of arithmetic unit. 

For reconfigurable devices, consider the following 
alternative: to implement the m-bit operations required by 
each cell, use an m×m array of 1-bit cells. In other words, 
the proposed architecture contains a two-level hierarchy 
of cells and “elements”, where cells work with m-bit 
words and elements work with single bits. The next 
question is how the m×m array of elements can implement 
all the functionality required by m-bit cells. For type A 
cells, the solution is simple: use the unsigned multiplier 
structure presented in Section 2. As shown in Figure 8 for 
m=4, each of the elements works with data in unsigned 
form. Hence, one can classify the elements as type A as 
well. 
 

 
 
Figure 8. Type A cell (m=4) 
 

Each element computes the 1-bit MAC function 
 
ψ1:0 = (α ∧ β) + γ + δ, (7) 
 
where α, β, γ, and δ denote the inputs to the element, and 
ψ signifies the 2-bit output. Note that multiplication 
reduces to the logical AND operation, denoted by ∧, in 
the 1-bit case. Each bit of the output ψ can be expressed 
in terms of the combinational logic functions 
 
ψ1 = MAJ(α ∧ β, γ, δ) 
ψ0 = XOR(α ∧ β, γ, δ), (8) 

 
where 
 
MAJ(P, Q, R) = (P ∧ Q) ∨ (P ∧ R) ∨ (Q ∧ R) 
XOR(P, Q, R) = P ⊕ Q ⊕ R. (9) 
 

As discussed in the last section, two’s-complement 
MAC units require additional types of cells. Type B cells, 
for example, assume that a, c, and d have two’s-
complement format, and that b has unsigned format. 
Using an m×m array of elements to implement a type B 
cell produces the result in Figure 9. 
 

 
 
Figure 9. Type B cell (m=4) 
 

Knowing the data format for each input to the cell, one 
can determine the format of every internal line using the 
information in Table 2. The procedure closely parallels 
the analysis for the two’s-complement multiplier in 
Figure 7, except that the signal names are Greek symbols 
instead of lowercase letters. The implementation of the 
type B cell requires elements of types A, B, and C. Note 
that both the upper and lower portions of the y output 
have two’s-complement format, as shown in Figure 7. 

Continuing on, cells of types C and D have 
straightforward implementations (Figures 10-11). Type E 
cells require five types of elements, including type G 
(Figure 12). Type F cells are similar (Figure 13). Finally, 
type H cells have the same formatting assignments as the 
two’s-complement multiplier (Figure 14). This property 
holds because all the inputs and outputs of a type H cell 
have two’s-complement format. 
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Figure 10. Type C cell (m=4) 
 
 

 
 
Figure 11. Type D cell (m=4) 
 
 

 
 
Figure 12. Type E cell (m=4) 

 
 
Figure 13. Type F cell (m=4) 
 
 

 
 
Figure 14. Type H cell (m=4) 
 

Now consider the MAC function computed by type B 
elements. From Table 2, the α, γ, δ, ψ1, and ψ0 signals of 
type B elements all have two’s-complement format. For 
each of these signals, logic 0 denotes 0 and logic 1 
denotes –1. Hence, type B elements compute the 
expression 
 
–2ψ1 – ψ0 = (–α × β) – γ – δ, (10) 
 
which simplifies to 
 
2ψ1 + ψ0 = (α ∧ β) + γ + δ. (11) 
 
Since (11) and (7) are equivalent, elements of types A and 
B implement the same combinational logic expressions. 

Performing a similar analysis on the remaining types 
of cells reveals that only four distinct types of elements 
are required. In fact, each element implements the same 
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expression for ψ0; the only difference is the expression 
used to compute ψ1. Table 3 lists the functions 
corresponding to each type of element. (Note that ¬ 
denotes the logical complement.) A reconfigurable 
architecture could exploit these similarities to implement 
all necessary operations efficiently. 
 

Table 3: Reduction of element types 
 

Type ψ1 ψ0 Same as 
A MAJ(α ∧ β, γ, δ) XOR(α ∧ β, γ, δ) A 
B MAJ(α ∧ β, γ, δ) XOR(α ∧ β, γ, δ) A 
C MAJ(α ∧ β, γ, ¬δ) XOR(α ∧ β, γ, δ) C 
D MAJ(α ∧ β, γ, ¬δ) XOR(α ∧ β, γ, δ) C 
E MAJ(α ∧ β, γ, ¬δ) XOR(α ∧ β, γ, δ) C 
F MAJ(α ∧ β, ¬γ, δ) XOR(α ∧ β, γ, δ) F 
G MAJ(α ∧ β, ¬γ, δ) XOR(α ∧ β, γ, δ) F 
H ¬MAJ(α ∧ β, ¬γ, ¬δ) XOR(α ∧ β, γ, δ) H 

 
5. Concluding Remarks 
 

In this paper, we have presented a novel scheme for 
performing n-bit multiply-accumulate (MAC) operations 
using a reconfigurable array of m-bit cells. Each cell 
computes an m-bit MAC function with two additive 
terms. The structure can be superpipelined into m-bit 
units for extremely high throughput, as required in signal 
processing applications. With suitable changes to the 
configuration of each cell, the structure can handle 
unsigned or two’s-complement inputs. To implement the 
functionality required by each cell, we propose to use an 
m×m matrix of reconfigurable 1-bit elements. Only four 
types of elements are required to construct multipliers of 
any size. 

As a final note, we have used the concepts presented in 
this paper to create a two-level reconfigurable 
architecture for digital signal processing applications [9]. 
The architecture contains an array of reconfigurable 4-bit 
cells, each of which consists of a 4×4 matrix of elements. 
Each element, in turn, uses a 4-input, 2-bit lookup table to 
evaluate arithmetic or logic functions. Cells can connect 
to neighboring cells in any direction. However, the matrix 
of elements can only assume two structures, one of which 
is the structure of the MAC unit. Having the capability to 
compute the MAC operation means that cells can perform 
the arithmetic functions necessary for digital signal 
processing. 
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