
Abstract

Reconfigurable devices used in digital signal
processing applications must handle large amounts of
data in vector form. Most signal processing algorithms
use multiplication extensively; thus, the hardware must
support this operation to achieve high performance.
However, mapping a multiplier on traditional fine-grain
devices produces a complex structure whose performance
is limited by the routing overhead. In this paper, we
present a novel pipelined multiplier structure suitable for
medium-grain and coarse-grain reconfigurable cell
arrays. We first implement an unsigned n-bit multiplier
using m-bit cells. Then, we show how the same structure
can work with two’s-complement data with small changes
to the configuration. The structure requires n/m2 cells,
but can execute vector operations in a pipelined fashion.
We also discuss the benefits of using a hierarchical
design for large multipliers.

1. Introduction

Reconfigurable hardware has become an attractive
option for implementing digital signal processing (DSP),
especially in applications that require both high
performance and flexibility. The performance of
reconfigurable devices typically falls between custom
integrated circuits and digital signal processors, while the
flexibility may even surpass both alternatives. In addition,
reconfigurable hardware incurs a low development cost
and can be adapted if the needs of the application change,
even after deployment [1].

DSP algorithms place great demands on the processing
power of any hardware implementation, due to the large
amount of binary arithmetic involved. For example, the
basic operation of a finite impulse-response (FIR) filter
contains several multiplications and additions:

y[n] = b0x[n] + b1x[n – 1] + … + bkx[n – k] (1)

As another example, the essential component of the Fast
Fourier Transform (FFT) also requires these two
operations, although the inputs and outputs are complex
numbers in this case:

Y0 = X0 + X1,
Y1 = (X0 – X1) × W. (2)

Most DSP algorithms repeat basic operations such as
these for every sample in the data set. To achieve
maximum performance, the hardware can pipeline the
multiplication and addition operations so that multiple
samples can be processed simultaneously. This technique
dramatically reduces the execution time of DSP
algorithms, but incurs a penalty of additional overhead.

Consider the problem of using reconfigurable
hardware to perform binary arithmetic on large data sets.
In general, reconfigurable devices contain an array of
programmable cells and interconnection structures [2].
Traditional fine-grain architectures such as the field-
programmable gate array (FPGA) place little functionality
in the cells. Implementing an adder on a fine-grain device
presents no major problems, as the cells can easily
generate the carry and sum bits required for this
operation. However, implementing a multiplier is a
significant challenge, due to the routing delays associated
with inter-cell communication in fine-grain devices. One
way around this problem is to include dedicated
multiplication hardware in the architecture [3, 4]. Another
approach is to extend the capabilities of each cell to work
with m-bit data words instead of single bits [5]. In fact,
these medium-grain and coarse-grain reconfigurable
devices show great promise for DSP applications [6, 7].

With this approach, the problem then becomes the
following: given an array of m-bit cells, design a structure
to multiply two unsigned n-bit integers A and B:

Y2n–1:0 = (An–1:0 × Bn–1:0). (3)

Note that the output Y contains 2n bits. As an initial
approach, consider the familiar carry-save multiplier [8].
Figure 1 illustrates this structure for n=20 and m=4. The

Pipelined Multipliers for Reconfigurable Hardware

Mitchell J. Myjak and José G. Delgado-Frias
School of Electrical Engineering and Computer Science, Washington State University

Pullman, WA 99164-2752 USA
{mmyjak, jdelgado}@eecs.wsu.edu

multiplier contains a rectangular array of cells with n/m
cells in the horizontal direction and n/m + 1 cells in the
vertical direction. A and B are divided into m-bit portions
and broadcast across the columns and rows of the array.

Figure 1. Carry-save multiplier (n=20, m=4)

Unlike a typical carry-save multiplier, each cell works
with m-bit inputs instead of 1-bit inputs. Cells on the top
row multiply two m-bit portions of A and B, passing the
upper and lower portions of result to other cells or the Y
output. Cells in the middle rows perform the same
multiplication and then add up to two m-bit terms to the
result. Finally, cells on the bottom row add up to three m-
bit terms together. As a function of n and m, the carry-
save multiplier requires n/m2 + n/m cells, while the
critical path is 2n/m cells long.

In the remainder of this paper, we describe a novel
improvement to the carry-save multiplier that reduces the
total number of cells required. As described in Section 2,
we modify the interconnection structure so that every cell
carries the same workload. The resulting structure can be
pipelined easily for high throughput. In Section 3, we
demonstrate that the same structure can be used to
perform two’s-complement multiplication with slight
changes to the operations performed by each cell. Section
4 briefly explores a hierarchical architecture in which
each cell uses a matrix of smaller elements to implement
the necessary operations. Finally, Section 5 gives some
concluding remarks.

2. Unsigned Multiplier

The most complex operation performed by any cell in
the carry-save multiplier is the m-bit multiply-accumulate
(MAC) function

y2m–1:0 = (am–1:0 × bm–1:0) + cm–1:0 + dm–1:0. (4)

Here a and b represent the two m-bit portions of A and B,
and c and d denote the two terms added to the result.
Figure 2 illustrates the inputs and outputs of a cell that
computes the MAC operation.

Figure 2. Inputs and outputs of MAC cell (m=4)

As we proposed in [9], one can reduce the size of the
multiplier by ensuring that all cells perform the same
operation. Such a reduction is possible because
reconfigurable devices typically contain an array of
identical cells. Observe in Figure 1 that the bottom row of
cells do not perform multiplication, and the cells in the
left column add one term instead of the usual two. Hence,
we can eliminate the bottom row of cells and rearrange
the interconnection scheme so that the cells in the left
column “take up the slack”. Figure 3 depicts the resulting
structure for the 20-bit case. This improved design has a
size of n/m2 cells and a critical path 2n/m – 1 cells
long.

Notice that two extra n-bit terms C and D can be
incorporated into the top row of cells. This enhancement
creates a powerful n-bit MAC unit that evaluates the
expression

Y2n–1:0 = (An–1:0 × Bn–1:0) + Cn–1:0 + Dn–1:0. (5)

The primary advantage of using arrays of cells to
perform multiplication is that the DSP algorithm can
exploit the benefits of pipelining. Suppose that we
superpipeline the structure in Figure 3 so that each cell
occupies one pipeline stage. The clock cycle time thus
includes the time to evaluate the m-bit MAC function as
well as the time to transfer the result to adjacent cells.
Figure 4 labels each cell in the improved MAC unit with
the clock cycle at which it calculates the intermediate
result. We can then insert the appropriate number of
pipeline registers into the module, as depicted by slashes
in the figure.

b3:0

y3:0

x+

y7:4

c3:0
a3:0 d3:0

A15:12 A11:8 A7:4

B7:4

Y7:4

x x x x x

x+ x+ x+ x+ x+

Y3:0

B3:0

A3:0 A19:16

B11:8

Y11:8

x+ x+ x+ x+ x+

B15:12

Y15:12

x+ x+ x+ x+ x+

B19:16

Y19:16

x+ x+ x+ x+ x+

+ + + + +

Y35:32 Y31:38 Y27:24 Y23:20 Y39:36

Figure 3. Improved MAC unit (n=20, m=4)

Figure 4. Superpipelined MAC unit

The latency of this superpipelined design equals the
length of the critical path, or 2n/m – 1 cycles. However,
the structure can initiate one operation per clock cycle,
making the resulting throughput very high. Notice that the
MAC unit generates the Y output in a staggered fashion:
the least significant m bits in the first cycle, the next m
bits in the second cycle, and so forth. The B input should
also arrive in this staggered fashion.

The pipelining scheme in Figure 4 has one
disadvantage: the m-bit portions of the B input must be
broadcast across several columns of cells during the same
clock cycle. Depending on the architecture of the
reconfigurable device, such an operation may not be
feasible. One way to eliminate the broadcast is to pipeline
all the internal lines of the MAC unit. As shown in Figure
5 for the 20-bit case, this change increases the total
latency of the module to 3n/m – 2. This additional delay
should be negligible for most DSP algorithms, since the
multiplier still initiates one operation per clock cycle. For
example, to multiply two 20-bit vectors of 1000 elements,
the former design requires 1008 cycles, whereas the latter
design requires 1012 cycles. If the clock cycle time can
be reduced due to the absence of broadcast operations, the
MAC unit with pipelined internal lines actually achieves
higher performance.

Figure 5. Superpipelined MAC unit with pipelined
internal lines

3. Two’s-Complement Multiplier

As a rule, DSP algorithms work with both positive and
negative numbers, so it is reasonable to expect that
applications may require two’s-complement
multiplication. In fact, the same multiplier structure can
be used to perform this operation, except that some cells
evaluate slightly different functions. Before we discuss
these modifications, recall from (4) that each cell in the
unsigned MAC unit evaluates the m-bit MAC function

y2m–1:0 = (am–1:0 × bm–1:0) + cm–1:0 + dm–1:0. (4)

B7:4

Y7:4

1 1 1 1 1

3 2 2 2 2

Y3:0

B3:0

B11:8

Y11:8

5 4 3 3 3

B15:12

Y15:12

7 6 5 4 4

B19:16

Y19:16

9 8 7 6 5

Y35:32 Y31:38 Y27:24 Y23:20 Y39:36

A15:12 A11:8 A7:4 A3:0 A19:16
D15:12 D11:8 D7:4 D3:0 D19:16

C15:12 C11:8 C7:4 C3:0 C19:16

pipeline latches

B7:4

Y7:4

5 4 3 2 1

7 6 5 4 3

Y3:0

B3:0

B11:8

Y11:8

9 8 7 6 5

B15:12

Y15:12

11 10 9 8 7

B19:16

Y19:16

13 12 11 10 9

Y35:32 Y31:38 Y27:24 Y23:20 Y39:36

A15:12 A11:8 A7:4 A3:0 A19:16
D15:12 D11:8 D7:4 D3:0 D19:16

C15:12 C11:8 C7:4 C3:0 C19:16

A15:12 A11:8 A7:4

B7:4

Y7:4

x+ x+ x+ x+ x+

x+ x+ x+ x+ x+

Y3:0

B3:0

A3:0 A19:16

B11:8

Y11:8

x+ x+ x+ x+ x+

B15:12

Y15:12

x+ x+ x+ x+ x+

B19:16

Y19:16

x+ x+ x+ x+ x+

Y35:32 Y31:38 Y27:24 Y23:20 Y39:36

D15:12 D11:8 D7:4 D3:0 D19:16
C15:12 C11:8 C7:4 C3:0 C19:16

Figure 6 illustrates how these m-bit terms are defined for
various cells in the design. For consistency, the c input to
the cell always appears to the left of the d input.

Figure 6. Cells in improved MAC unit

Now consider a two’s-complement MAC unit that
handles n-bit inputs in m-bit portions. From the properties
of two’s-complement numbers, the most significant m-bit
portion has two’s-complement format, but the remaining
m-bit portions have unsigned format. Hence, if we modify
the unsigned MAC unit to perform two’s-complement
arithmetic, many of the cells will still operate on unsigned
inputs. Figure 7 depicts the two’s-complement multiplier
for n=20 and m=4. Solid lines denote unsigned data;
dashed lines denote two’s-complement data.

Figure 7. Two’s-complement MAC unit (m=20, n=4)

Observe that some of the cells generate two’s-
complement outputs, whereas other cells do not. In fact,
the two’s-complement MAC unit contains seven types of
cells, labeled A through H in the figure (G is missing for
technical reasons). The A cells simply evaluate the
unsigned MAC function in (4). However, the B cell must
multiply the two’s-complement portion of A with an

unsigned portion of B. The cell also adds two’s-
complement portions of C and D to the result.

In order to represent the entire range of valid outputs,
the B cell must generate a 2m-bit output y whose upper m
bits and lower m bits are both two’s-complement
numbers. This data format is unusual, but is the best
choice for representing the result. One can think of the
cell as generating two m-bit outputs satisfying the
expression

2my2m–1:m + ym–1:0 = (am–1:0 × bm–1:0) + cm–1:0 + dm–1:0. (6)

where am–1:0, cm–1:0, dm–1:0, y2m–1:m, and ym–1:0 are in two’s-
complement format. Table 1 lists several example 4-bit
calculations for the B cell. Recall that a 4-bit two’s-
complement numbers ranges from –8 to 7, whereas a 4-bit
unsigned number ranges from 0 to 15.

Table 1: Example calculations of the B cell

a3:0 b3:0 c3:0 d3:0 y7:4 y3:0 y7:0 = 16y7:4 + y3:0
5 5 5 –5 2 –7 25
5 10 5 5 4 –4 60

–5 5 5 –5 –2 7 –25
–5 10 –5 –5 –4 4 –60
7 15 7 7 7 7 119

–8 15 –8 –8 –8 –8 –136

A similar analysis can be performed for the remaining
cells used in the multiplier. For example, the C cells
generate an unsigned output y2m–1:m and a two’s-
complement output ym–1:0. With the data formats shown in
Figure 7, the n-bit multiplier can generate a two’s-
complement output Y without additional hardware. Table
2 lists the input and output format of each type of cell
(including the G cell used later). A “+” sign denotes
unsigned format, and a “–” sign denotes two’s-
complement format.

Table 2: Data format requirements for each cell

Type am–1:0 bm–1:0 cm–1:0 dm–1:0 y2m–1:m ym–1:0
A + + + + + +
B – + – – – –
C + + + – + –
D – + – + – +
E + – – + – +
F + – + – – +
G + + – + + –
H – – – – – +

b3:0

y3:0

x+

y7:4

c3:0 a3:0 d3:0

b3:0

y3:0

x+
y7:4

c3:0 a3:0

d3:0
b3:0

y3:0

x+
d3:0

y7:4

a3:0 c3:0

B7:4

Y7:4

B A A A A

D C A A A

Y3:0

B3:0

B11:8

Y11:8

D A C A A

B15:12

Y15:12

D A A C A

B19:16

Y19:16

H F F F E

Y35:32 Y31:38 Y27:24 Y23:20 Y39:36

A15:12 A11:8 A7:4 A3:0 A19:16
D15:12 D11:8 D7:4 D3:0 D19:16

C15:12 C11:8 C7:4 C3:0 C19:16

two’s complement line

4. Hierarchical Multiplier

The last two sections have demonstrated that n-bit
MAC units in general require seven types of cells. Each
cell performs the MAC function on m-bit inputs, but
different cells use different data formats. A natural
question is how each cell can implement the required m-
bit operations. For m=1, a simple combinational circuit
suffices, but for larger m, the most practical solution may
involve some kind of arithmetic unit.

For reconfigurable devices, consider the following
alternative: to implement the m-bit operations required by
each cell, use an m×m array of 1-bit cells. In other words,
the proposed architecture contains a two-level hierarchy
of cells and “elements”, where cells work with m-bit
words and elements work with single bits. The next
question is how the m×m array of elements can implement
all the functionality required by m-bit cells. For type A
cells, the solution is simple: use the unsigned multiplier
structure presented in Section 2. As shown in Figure 8 for
m=4, each of the elements works with data in unsigned
form. Hence, one can classify the elements as type A as
well.

Figure 8. Type A cell (m=4)

Each element computes the 1-bit MAC function

ψ1:0 = (α ∧ β) + γ + δ, (7)

where α, β, γ, and δ denote the inputs to the element, and
ψ signifies the 2-bit output. Note that multiplication
reduces to the logical AND operation, denoted by ∧, in
the 1-bit case. Each bit of the output ψ can be expressed
in terms of the combinational logic functions

ψ1 = MAJ(α ∧ β, γ, δ)
ψ0 = XOR(α ∧ β, γ, δ), (8)

where

MAJ(P, Q, R) = (P ∧ Q) ∨ (P ∧ R) ∨ (Q ∧ R)
XOR(P, Q, R) = P ⊕ Q ⊕ R. (9)

As discussed in the last section, two’s-complement
MAC units require additional types of cells. Type B cells,
for example, assume that a, c, and d have two’s-
complement format, and that b has unsigned format.
Using an m×m array of elements to implement a type B
cell produces the result in Figure 9.

Figure 9. Type B cell (m=4)

Knowing the data format for each input to the cell, one
can determine the format of every internal line using the
information in Table 2. The procedure closely parallels
the analysis for the two’s-complement multiplier in
Figure 7, except that the signal names are Greek symbols
instead of lowercase letters. The implementation of the
type B cell requires elements of types A, B, and C. Note
that both the upper and lower portions of the y output
have two’s-complement format, as shown in Figure 7.

Continuing on, cells of types C and D have
straightforward implementations (Figures 10-11). Type E
cells require five types of elements, including type G
(Figure 12). Type F cells are similar (Figure 13). Finally,
type H cells have the same formatting assignments as the
two’s-complement multiplier (Figure 14). This property
holds because all the inputs and outputs of a type H cell
have two’s-complement format.

b1

y1

B A A A

D C A A

y0

b0

b2

y2

D A C A

b3

y3

D A A C

a3 d3 c3 c2 c1 c0

y4 y5 y6 y7

a2 d2 a1 d1 a0 d0

b1

y1

A A A A

A A A A

y0

b0

b2

y2

A A A A

b3

y3

A A A A

a3 d3 c3 c2 c1 c0

y4 y5 y6 y7

a2 d2 a1 d1 a0 d0

Figure 10. Type C cell (m=4)

Figure 11. Type D cell (m=4)

Figure 12. Type E cell (m=4)

Figure 13. Type F cell (m=4)

Figure 14. Type H cell (m=4)

Now consider the MAC function computed by type B
elements. From Table 2, the α, γ, δ, ψ1, and ψ0 signals of
type B elements all have two’s-complement format. For
each of these signals, logic 0 denotes 0 and logic 1
denotes –1. Hence, type B elements compute the
expression

–2ψ1 – ψ0 = (–α × β) – γ – δ, (10)

which simplifies to

2ψ1 + ψ0 = (α ∧ β) + γ + δ. (11)

Since (11) and (7) are equivalent, elements of types A and
B implement the same combinational logic expressions.

Performing a similar analysis on the remaining types
of cells reveals that only four distinct types of elements
are required. In fact, each element implements the same

b1

y1

B A A A

D C A A

y0

b0

b2

y2

D A C A

b3

y3

H F F E

a3 d3 c3 c2 c1 c0

y4 y5 y6 y7

a2 d2 a1 d1 a0 d0

b1

y1

C A A A

A C A A

y0

b0

b2

y2

A A C A

b3

y3

F F F E

a3 d3 c3 c2 c1 c0

y4 y5 y6 y7

a2 d2 a1 d1 a0 d0

b1

y1

G A A A

A C A A

y0

b0

b2

y2

A A C A

b3

y3

F F F E

a3 d3 c3 c2 c1 c0

y4 y5 y6 y7

a2 d2 a1 d1 a0 d0

b1

y1

D A A A

D A A A

y0

b0

b2

y2

D A A A

b3

y3

D A A A

a3 d3 c3 c2 c1 c0

y4 y5 y6 y7

a2 d2 a1 d1 a0 d0

b1

y1

C A A A

A C A A

y0

b0

b2

y2

A A C A

b3

y3

A A A C

a3 d3 c3 c2 c1 c0

y4 y5 y6 y7

a2 d2 a1 d1 a0 d0

expression for ψ0; the only difference is the expression
used to compute ψ1. Table 3 lists the functions
corresponding to each type of element. (Note that ¬
denotes the logical complement.) A reconfigurable
architecture could exploit these similarities to implement
all necessary operations efficiently.

Table 3: Reduction of element types

Type ψ1 ψ0 Same as
A MAJ(α ∧ β, γ, δ) XOR(α ∧ β, γ, δ) A
B MAJ(α ∧ β, γ, δ) XOR(α ∧ β, γ, δ) A
C MAJ(α ∧ β, γ, ¬δ) XOR(α ∧ β, γ, δ) C
D MAJ(α ∧ β, γ, ¬δ) XOR(α ∧ β, γ, δ) C
E MAJ(α ∧ β, γ, ¬δ) XOR(α ∧ β, γ, δ) C
F MAJ(α ∧ β, ¬γ, δ) XOR(α ∧ β, γ, δ) F
G MAJ(α ∧ β, ¬γ, δ) XOR(α ∧ β, γ, δ) F
H ¬MAJ(α ∧ β, ¬γ, ¬δ) XOR(α ∧ β, γ, δ) H

5. Concluding Remarks

In this paper, we have presented a novel scheme for
performing n-bit multiply-accumulate (MAC) operations
using a reconfigurable array of m-bit cells. Each cell
computes an m-bit MAC function with two additive
terms. The structure can be superpipelined into m-bit
units for extremely high throughput, as required in signal
processing applications. With suitable changes to the
configuration of each cell, the structure can handle
unsigned or two’s-complement inputs. To implement the
functionality required by each cell, we propose to use an
m×m matrix of reconfigurable 1-bit elements. Only four
types of elements are required to construct multipliers of
any size.

As a final note, we have used the concepts presented in
this paper to create a two-level reconfigurable
architecture for digital signal processing applications [9].
The architecture contains an array of reconfigurable 4-bit
cells, each of which consists of a 4×4 matrix of elements.
Each element, in turn, uses a 4-input, 2-bit lookup table to
evaluate arithmetic or logic functions. Cells can connect
to neighboring cells in any direction. However, the matrix
of elements can only assume two structures, one of which
is the structure of the MAC unit. Having the capability to
compute the MAC operation means that cells can perform
the arithmetic functions necessary for digital signal
processing.

6. Acknowledgment

M. Myjak is supported by the U.S. Department of
Homeland Security Graduate Fellowship.

7. References

[1] R. Tessier and W. Burleson, “Reconfigurable computing
for digital signal processing: a survey”, in Y. Hu (ed.),
Programmable digital signal processors, Marcel Dekker Inc.,
2001.

[2] K. Compton and S. Hauck, “Reconfigurable computing: a
survey of systems and software,” ACM Computing Surveys, vol.
34, no. 2, Jun 2002, pp. 171-210.

[3] K. Rajagopalan and P. Sutton, “A flexible multiplication
unit for an FPGA logic block,” in Proc. 2001 IEEE
International Symposium on Circuits and Systems, 2001, pp.
546-549.

[4] S. Haynes and P. Cheung, “Configurable multiplier blocks
for embedding in FPGAs,” Electronics Letters, vol. 34, iss. 7,
Apr 1998, pp. 638-639.

[5] R. Hartenstein, “Coarse grain reconfigurable architectures,”
in Proc. 6th Asia South Pacific Design Automation Conference,
Yokohama, Japan, 2001, pp. 564-570.

[6] J. Smit et al, “Low cost and fast turnaround: reconfigurable
graph-based execution units,” in Proc. 7th BELSIGN Workshop,
Enschede, Netherlands, 1998.

[7] P. Heysters and G. Smit, “Mapping of DSP algorithms on
the MONTIUM architecture,” in Proc. International Parallel
and Distributed Processing Symposium, Apr 2003, pp. 180-185.

[8] J. Rabaey et al, Digital Integrated Circuits: A Design
Perspective, 2nd ed., Upper Saddle River, NJ: Pearson
Education, Inc., 2003, pp. 591-592.

[9] M. Myjak and J. Delgado-Frias, “A two-level
reconfigurable architecture for digital signal processing,” in
Proc. 2003 International Conference on VLSI, Las Vegas, NV,
Jun 2003, pp. 21-27.

